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Abstract. Codebooks have been widely used for image retrieval and
image indexing, which are the core elements of mobile visual searching.
Building a vocabulary tree is carried out offline, because the clustering
of a large amount of training data takes a long time. Recently proposed
adaptive vocabulary trees do not require offline training, but suffer from
the burden of online computation. The necessity for clustering high di-
mensional large data has arisen in offline and online training. In this
paper, we present a novel clustering method to reduce the burden of
computation without losing accuracy. Feature selection is used to re-
duce the computational complexity with high dimensional data, and an
ensemble learning model is used to improve the efficiency with a large
number of data. We demonstrate that the proposed method outperforms
the-state of the art approaches in terms of computational complexity on
various synthetic and real datasets.

1 Introduction

Image to image matching is one of the important tasks in mobile visual search-
ing. A vocabulary tree based image search is commonly used due to its simplicity
and high performance [1–6]. The original vocabulary tree method [1] cannot grow
and adapt with new images and environments, and it takes a long time to build
a vocabulary tree through clustering. An incremental vocabulary tree was intro-
duced to overcome limitations such as adaptation in dynamic environments [4,
5]. It does not require heavy clustering for the offline training process due to
the use of a distributed online process. The clustering time of the incremental
vocabulary tree is the chief burden in the case of realtime application. Thus, an
efficient clustering method is required.

Lloyd kmeans [7] is the standard method. However, this algorithm is not
suitable for high dimensional large data, because the computational complexity
is proportional to the number and the dimension of data. Various approaches
have been proposed to accelerate the clustering and reduce the complexity. One
widely used approach is applying geometric knowledge to avoid unnecessary com-
putations. Elkans algorithm [8] is the representative example, and this method
does not calculate unnecessary distances between points and centers. Two ad-
ditional strategies for accelerating kmeans are refining initial data and finding
good initial clusters. The P.S Bradley approach [9] refines initial clusters as data
close to the modes of the joint probability density. If initial clusters are selected
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by nearby modes, true clusters are found more often, and the algorithm iterates
fewer times. Arthur kmeans [10] is a representative algorithm that chooses good
initial clusters for fast convergence. This algorithm randomly selects the first
center for each cluster, and then subsequent centers are determined with the
probability proportional to the squared distance from the closest center.

The aforementioned approaches, however, are not relevant to high dimen-
sional large data except for Elkans algorithm. This type of data contains a high
degree of irrelevant and redundant information [11]. Also, owing to the sparsity
of data, it is difficult to find the hidden structure in a high dimension space.
Some researchers thus have recently solved the high dimensional problem by de-
creasing the dimensionality [12, 13]. Others have proposed clustering the original
data in a low dimensional subspace rather than directly in a high dimensional
space [14–16]. Two basic types of approaches to reduce the dimensionality have
been investigated: feature selection [14] and feature transformation [15, 16]. One
of the feature selection methods, random projection [17], has received attention
due to the simplicity and efficiency of computation.

Ensemble learning is mainly used for classification and detection. Fred [18]
first introduced ensemble learning to the clustering society in the form of an
ensemble combination method. The ensemble approach for clustering is robust
and efficient in dealing with high dimensional large data, because distributed
processing is possible and diversity is preserved. In detail, the ensemble approach
consists of the generation and combination steps. Robustness and efficiency of an
algorithm can be obtained through various models in the generation step [19]. To
produce a final model, multiple models are properly combined in the combination
step [20, 21].

In this paper, we show that kmeans clustering can be formulated by fea-
ture selection and an ensemble learning approach. We propose a two-stage al-
gorithm, following the coarse to fine strategy. In the first stage, we obtain the
sub-optimal clusters, and then we obtain the optimal clusters in the second stage.
We employ a proposed binary random matrix, which is learned by each ensemble
model. Also, using this simple matrix, the computational complexity is reduced.
Due to the first ensemble stage, our method chooses the initial points nearby
sub-optimal clusters in the second stage. Refined data taken from an ensemble
method can be sufficiently representative because they are sub-optimal. Also,
our method can avoid unnecessary distance calculation by a triangle inequality
and distance bounds. As will be seen in Sec. 3, we show good performance with
a binary random matrix, thus demonstrating that the proposed random matrix
is suitable for finding independent bases.

This paper is organized as follows. In Sec. 2, the proposed algorithm to
solve the accelerated clustering problem with high dimensional large data is
described. Sec. 3 presents various experimental results on object classification,
image retrieval, and loop detection.
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2 Proposed algorithm

The kmeans algorithm finds values for the binary membership indicator rij and
the cluster center cj so as to minimize errors in Eq. (1). If data point xi is
assigned to cluster cj then rij = 1.

J =

N∑
i

K∑
j

rij‖xi − cj‖2 (1)

We can do this through an iterative procedure in which each iteration involves
two successive steps corresponding to successive optimizations with respect to rij
and the cj . The conventional kmeans algorithm is expensive for high dimensional
large datasets, requiring O(K ∗N ∗D) computation time, where K is the number
of clusters, N is the number of input data and D is the maximum number of
non-zero elements in any example vector. Large datasets of high dimensionality
for kmeans clustering should be studied.

J ∼=
N̂∑
i

K∑
j

rij‖x̂i − ĉj‖2 (2)

We proposed a novel framework for an accelerating algorithm in Eq. (2).
The goal of our method is to find the refining data x̂ that well represent the
distribution of the original input x. Using the refining data obtained from Eq. (3),
the final clustering process for K clusters is equal to the coarse to fine strategy for
accelerated clustering. The number of x̂, namely N̂ is relatively small, but refined
data x̂ can sufficiently represent the original input data x. c and ĉ represent the
center of the clusters in each set of data.

J ∼=
N∑
i

N̂∑
j

rij‖xi − x̂j‖2 (3)

To obtain the refining data introduced in Eq. (2), this paper adopts a kmeans
optimizer, as delineated in Eq. (3), because it affords simplicity and compatibility
with variations of kmeans. The refining data x̂ in Eq. (3) are used as the input
data of Eq. (2) to calculate the K clusters. In the above, x̂ denote refined data
that have representativeness of the input x. N̂ is the number of data x̂. The N̂
value is much smaller than N .

J ∼=
N∑
i

N̂∑
j

rij‖A(xi − x̂j)‖2 (4)

For estimating the refining data with the conventional kmeans optimizer, we
propose a clustering framework that combines random selection for dimension
reduction and the ensemble models. This paper proposes a way to minimize data
loss using a feature selection method, binary random projection. Our approach
can discover underlying hidden clusters in noisy data through dimension reduc-
tion. For these reasons, Eq. (3) is reformulated as Eq. (4). According to Eq. (4),
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the proposed method chooses x̂ that best represents x. In the above, matrix A
is the selection matrix of features. This matrix is called a random matrix.

J ∼=
T∑
m

Ñm∑
i

K̃m∑
j

rmij ‖Am(x̃mi − x̂mj )‖2 (5)

Eq. (4) is rewritten as Eq. (5) using ensemble learning models. Ensemble
learning based our method reduces the risk of unfortunate feature selection and
splits the data into small subset. Our work can select more stable and robust
refining data x̂ comparable with the results of Eq. (4) In the above, x̃ and Ñ
denote sampling data of input x and the number of sampling data, and T and
m denote the number and the order of ensemble models, respectively.

J ∼=
T∑
m

Ñm∑
i

K̃m∑
j

rmij ‖(x̃
′m
i − x̂

′m
j )‖2 (6)

Eq. (6) can be derived from Eq. (5) by random selection instead of random
projection. In the above, the prime symbol denotes that variables are projected
by matrix A.

Finally, this paper approximates the kmeans clustering as both Eq. (6) and
Eq. (2). This approach presents an efficient kmeans clustering method that cap-
italizes on the randomness and the sparseness of the projection matrix for di-
mension reduction in high dimensional large data.

As mentioned above, our algorithm is composed of two phases combining
Eq. (3) and Eq. (2). In the first stage, our approach builds multiple models by
small sub-samples of the dataset. Each separated dataset is applied to kmeans
clustering, and it randomly selects arbitrary attribute-features in every itera-
tion. As we compute the minimization error in every iteration, we only require
sub-dimensional data. The approximated centroids can be obtained by smaller
iterations than one phase clustering. These refined data from the first stage are
used as the input of the next step. The second stage consists of a single kmeans
optimizer to merge the distributed operations. Our algorithm adopts a coarse
to fine strategy so that the product of the first stage is suitable to achieve fast
convergence. The algorithm is delineated below in Algorithm 1.

2.1 Feature selection in single model

Ñm∑
i

K̃m∑
j

rmij ‖Am(x̃mi − x̂mj )‖2 (7)

Eq. (7) indicates the mth single model in the ensemble generation stage. In
each model, our algorithm finds values for rmij , x̂mj and the Am so as to minimize
errors in Eq. (7). This problem is considered as a clustering problem in the
high dimensional subspace. In this chapter, we describe basic concepts of the
dimension reduction approaches, and we analyze the proposed algorithm with
in comparison with others [14, 22].
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Random projection Principal component analysis (PCA) is a widely used
method for reducing the dimensionality of data. Unfortunately, it is quite ex-
pensive to compute in high dimensional data. It is thus desirable to derive a
dimension reduction method that is computationally simple without yielding
significant distortion.

As an alternative method, random projection (RP) has been found to be
computationally efficient yet sufficiently accurate for the dimension reduction of
high dimensional data. In random projection, the d-dimensional data in original
spaces is projected to d′-dimensional sub-spaces. This random projection uses the
matrix Ad′×d, where the columns have unit lengths, and it is calculated through
the origin. Using matrix notation, the equation is given as follows: XRP

d′×N =
Ad′×dXd×N . If a projection matrix A is not orthogonal, it causes significant
distortion in the dataset. Thus, we should consider the orthogonality of matrix
A, when we design the matrix A.

We introduce the random projection approach into the proposed method to
improve the computational efficiency. The recent literature shows that a group
among a set of high-dimensional clusters lies on a low-dimensional subspace in
many real-world applications. In this case, the underlying hidden subspace can be
retrieved by solving a sparse optimization problem, which encourages selecting
nearby points that approximately span a low dimensional affine subspace. Most
previous approaches focus on finding the best low-dimensional representation of
the data for which a single feature representation is sufficient for the clustering
task [23, 24]. Our approach takes into account clustering of high-dimensional
complex data. It has more than a single subspace due to the extensive attribute
variations over the feature space. We model the complex data with multiple
feature representations by incorporating binary random projection.

Random projection matrix Matrix A of Eq. (7) is generally called a random
projection matrix. The choice of the random projection matrix is one of the
key points of interest. According to [22], elements of A are Gaussian distributed
(GRP). Achiloptas [14] has recently shown that the Gaussian distribution can be
replaced by a simpler distribution such as a sparse matrix (SRP). In this paper,
we propose the binary random projection (BRP) matrix, where the elements aij
consist of zero or one value, as delineated in Eq. (8).

aij =

{
1 with probability α
0 with probability 1− α (8)

Given that a set of features from data is λ-sparse, we need at least λ-
independent canonical bases to represent the features lying on the λ-dimensional
subspace. Because BRP encourages the projection matrix to be λ-independent,
the data are almost preserved to the extent of λ-dimensions even after the pro-
jection. If the projection vectors are randomly chosen regardless of the indepen-
dence, it can be insufficient to accurately span the underlying subspace because
of the rank deficiency of the projection matrix. This shows that SRP without
imposing the independent constraint gives rise to representation errors when
projecting onto a subspace.
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Algorithm 1 Proposed accelerated kmeans algorithm

1: X : input data, K : the number of clusters, Ĉ : final centers of clusters
2: R : the binary membership indicator, C : the center of clusters
3: A : proposed random matrix
4: T : the number of ensemble models
5: X̃ : sampling data, C̃ : the center of clusters in single ensemble
6: X̃

′
: sampling data in lower dimensional space

7: C̃
′

: the center of clusters in lower dimensional space
8: N : the total number of sampling data
9: Ñ : the number of sampling data in single ensemble

10: X̂ : the refining sampling data from the first generation stage
11:
12: procedure AcceleratedKMeans(X, K)
13: for m = 1→ T do
14: X̃ = Bootstrap(X, Ñ)

15: Initialize A, X̃
′
, C̃

′
and R

16: while the stop condition is satisfied do
17: if the iteration is not first then
18: Anew = GetBRP()
19: if Anew reduce the error than A then
20: A = Anew, X̃

′
= AX̃, C̃

′
= AC̃

21: end if
22: end if
23: R = MatchDataAndCluster(X̃

′
, C̃

′
)

24: C̃
′

= UpdateCluster(X̃
′
,R)

25: end while
26: for j → K do

27: x̂mj =
∑

rij x̃i∑
rij

28: Add x̂mj to X̂
29: end for
30: end for
31: Ĉ =kmeans(X̂,K)
32: end procedure

Distance bound and triangle inequality Factors that can cause kmeans
to be slow include processing large amounts of data, computing many point-
center distances, and requiring many iterations to converge. A primary strat-
egy of accelerating kmeans is applying geometric knowledge to avoid computing
redundant distance. For example, Elkan kmeans [8] employs the triangle in-
equality to avoid many distance computations. This method efficiently updates
the upper and lower bounds of point-center distances to avoid unnecessary dis-
tance calculations. The proposed method projects high dimensional data onto
the lower dimensional subspace using the BRP matrix. It may be determined
that each data of lower dimensional subspace cannot guarantee exact geometric
information between data. However, our method is approximately preserved by
the Johnson-Lindenstrauss lemma [25]: if points in a vector space are projected
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on to a randomly selected subspace of a suitably high dimension, then the dis-
tances between the points are approximately preserved. Our algorithm thus can
impose a distance bound characteristic to reduce the computational complexity.

2.2 Bootstrap sampling and ensemble learning

Our approach adopts an ensemble learning model because of statistical reasons
and large volumes of data. The statistical reason is that combining the outputs
of several models by averaging may reduce the risk of an unfortunate feature
selection. Learning with such a vast amount of data is usually not practical.
We therefore use a partitioning method that separates all dataset into several
small subsets. Also, we learn each models with disjoint subdata. By adapting
the ensemble approach to our work, we obtain diversity of models and decrease
the correlation between ensemble models. The results of Eq. (5) thus are more
stable and comparable to the results of Eq. (4).

To reduce the risk of an unfortunate feature selection, the diversity of each
ensemble models should be guaranteed. The diversity of ensemble models can be
generally achieved in two ways. The most popular way is to employ a different
dataset in each model, and the other is to use different learning algorithms. We
choose the first strategy, and the bootstrap is used for pre-processing of feature
selection. We empirically show that our method produces sufficient diversity,
even when the number of ensembles is limited.

As multiple candidate clusters are combined, our algorithm considers the
compatibility with variants of kmeans methods and efficiency of the execution
time. Our method simply combines multiple candidate clusters using the con-
ventional kmeans algorithm to guarantee fast convergence. Finally, it affords
K clusters by minimizing errors in Eq. (2) using the refined products of the
generation stage, as mentioned above.

2.3 Time complexity

The time complexity for three accelerated algorithms is described in Table 1. We
use lower case letters n, d, and k instead of N , D, and K for the readability. The
total time is the summation of elapsed time in each kmeans iteration without
the initialization step. The proposed total time in Table 1, the first part of the or
statement represents executed total time without geometric knowledge to avoid
computing the redundant distance, while the second part indicates total time
with geometric knowledge. Our algorithm shows the highest simplicity, since the
αβ ∗ T term is much smaller than 1.

The underline notation comes from Elkans kmeans, and n denotes the number
of data, which need to be updated in every distance calculation. ñ indicates the
number of reduced data using bootstrap, and d′ denotes the number of reduced
features. Let α denote ñ/n, β denote d′/d, and γ denote Tk/n, which is a ratio
of the number of data used in the generation and combination stage. As will be
seen in Sec. 3, these values are much smaller than 1.
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Table 1: The asymptotic total time for each examined algorithm.

total time

kmeans O(ndk) ∗ iter

Elkan O(ndk + dk2) ∗ iter

proposed αβ ∗ T ∗O(ndk) ∗ iter or T ∗O(ñd′k + d′k2) ∗ iter

3 Experiments

We extensively evaluate the performances on various datasets. Synthetic and
real datasets are used for the explicit clustering evaluation in terms of accuracy
and elapsed time. We also show offline and online training efficiency for building
a vocabulary tree [1] and incremental vocabulary tree [5]. As mentioned earlier,
the incremental vocabulary tree does not need heavy clustering in the offline
training process due to the distributed online process. Thus, strict elapsed time
is more important for online clustering.

Our algorithm has three parameters: α, β, and T . The default values of
parameters are determined through several experiments. The values of α and β
are set as [0.1, 0.3] and T is selected as [5, 7]. During the experiments, these
values are preserved.

3.1 Data sets

Synthetic data We use synthetic datasets based on a standard cluster model
using a multi-variated normal distribution. Synthetic data generation tool is
available on the website1. This generator gives two datasets, Gaussian and el-
lipse cluster data. To evaluate the performance of the algorithm over various
numbers of data (N), dimensions of data (D), and numbers of groups of data
(K), we generated datasets having N = 100K, K ∈ {3, 5, 10, 100, 500}, and D
∈ {8, 32, 128}.

Tiny Images We use the CIFAR-10 dataset, which is composed of labelled
subsets of 80 million tiny images [26]. CIFAR-10 consists of 10 categories and
it contains 6000 images for each category. Each image is represented as GIST
feature of dimension 384.

RGBD Images We collect about object images from the RGBD dataset [27].
RGBD images are randomly sampled with category information. We use a 384-
dimensional GIST feature to represent each image.

Caltech101 It contains images of 101 categories of objects, gathered from
the internet. This dataset is mainly used to benchmark classification methods.
We extract dense multi-scale SIFT feature for each image, and randomly sample
1M features to form this dataset.

1 http://personalpages.manchester.ac.uk/mbs/Julia.Handl/generators.html.
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UKbench This dataset is from the Recognition Benchmark introduced in [1].
It consists of 10200 images split into four-image groups, with each of the same
scene/object taken at different viewpoints. The features of the dataset and
ground truth are publicly available.

Indoor/Outdoor One indoor and two outdoor datasets are used to demon-
strate the efficiency of our approach. Indoor images are captured by a mobile
robot that moves twice along a similar path in the building. This dataset has
5890 images. SURF features are used to represent each image. Outdoor datasets
are captured by a moving vehicle. We refer to the datasets as small and large
outdoor datasets for the sake of convenient reference. The vehicle moves twice
along the same path in the small outdoor dataset. In the large outdoor dataset,
the vehicle travels about 13km while making many loops. This large dataset
consists of 23812 images, and we use sub-sampled images for test.

3.2 Evaluation metric

We use three metrics to evaluate the performance of various clustering algo-
rithms, elapsed time, the within-cluster sum of squared distortions (WCSSD),
and the normalized mutual information (NMI) [28]. NMI is widely used for clus-
tering evaluation, and it is a measurement of how close clustering results are to
the latent classes. NMI requires the ground truth of cluster assignments X for
points in the dataset. Given clustering results Y, NMI is defined by NMI(X,Y)

= MI(X,Y )√
H(X)H(Y )

, where MI(X,Y) is the mutual information of X and Y and H(·)
is the entropy.

To tackle a massive amount of data, distributed computing and efficient learn-
ing need to be integrated into vision algorithms for large scale image classifica-
tion and image indexing. We apply our method to visual codebook generation for
bag-of-models based applications. In our experiments, the precision/recall and
similarity matrix are used for image indexing and the evaluation of classified
images follows [29]. Our results show the quality and efficiency of the codebooks
with all other parameters fixed, except the codebook.

3.3 Clustering performance

We compare our proposed clustering algorithm with three variations: Lloyd
kmeans algorithm, Athur kmeans algorithm, and Elkan kmeans algorithm. All
algorithms are run on a 3.0GHz, 8GB desktop PC using a single thread, and are
mainly implemented in C language with some routines implemented in Matlab.
We use the public releases of Athur kmeans and Elkan kmeans. The time costs
for initialization and clustering are included in the comparison.

The results in Fig. 1 and Fig. 2 are shown for various dimensions of data and
various numbers of clusters, respectively. The proposed algorithm is faster than
Lloyds algorithm. Our algorithm consistently outperforms the other variations
of kmeans in high dimensional large datasets. Also, our approach performs best
regardless of K. However, from the results of this work, the accuracy of clustering
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Fig. 1: Clustering performance in terms of elapsed time vs. the number of clusters
and the clustering accuracy (N=100,000)
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Fig. 2: Clustering performance in terms of elapsed time vs. the number of di-
mensions and the clustering accuracy (N=100,000)

in low dimensional datasets is not maintained. Hecht-Nielsens theory [30] is not
valid in low dimensional space, because a vector having random directions might
not be close to orthogonal.

Our algorithm is also efficient for real datasets. We use CIFAR10 and RGBD
image sub-datasets without depth. Fig. 3 and Fig. 4 show the clustering results
in terms of WCSSD vs. time and NMI. As seen in these figures, the WCSSD of
our algorithm is smaller than that of the earlier work and the NMI is similar.
From this, we can see that our approach provides faster convergence with a small
number of iterations.
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Fig. 3: Clustering performance of CIFAR-102 3 4 5 6 7
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Fig. 4: Clustering performance of RGBD objects
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Fig. 5: The comparison of the clustering time with various vocabulary sizes. (a)
is the result on the Caltech101. (b) is the result on the UKbench dataset.

4 Applications

4.1 Evaluation using object recognition

We compare the efficiency and quality of visual codebooks, which are respectively
generated by flat and hierarchical clustering methods. A hierarchical clustering
method such as HKM [1] is suitable for large data applications.

The classification and identification accuracy are similar and therefore we
only present results in terms of elapsed time as increasing the size of visual
words, namely vocabulary, in Fig. 5. We perform the experiments on the Cal-
tech101 dataset, which contains 0.1M randomly sampled features. Following [29],
we run the clustering algorithms used to build a visual codebook, and test only
the codebook generation process in the image classification. Results of the Cal-
tech101 dataset are obtained by 0.3K, 0.6K, and 1K codebooks, and a χ2-SVM
on top of 4×4 spatial histograms. From Fig. 5a, we see that for the same vocab-
ulary size, our method is more efficient than the other approaches. However, the
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accuracy of each algorithm is similar. For example, when we use 1K codebooks
for clustering, the mAP of our approach is 0.641 and that of the other approach
is 0.643.

In the experiment on the UKbench dataset, we use a subset of database
images and 760K local features. We evaluate the clustering time and the per-
formance of image retrieval with various vocabulary sizes from 200K to 500K.
Fig. 5b shows that our method runs faster than the conventional approach with
a similar mAP, about 0.75.

4.2 Evaluation using image indexing

The vocabulary tree is widely used in vision based localization in mobile devices
and the robot society [4–6]. The problem with the bag-of-words model lies in
that a codebook built by each single dataset is insufficient to represent unseen
images. Recently, the incremental vocabulary tree was presented for adapting to
dynamic environments and removing offline training [4, 5]. In this experiment,
we use the incremental codebooks, as mentioned in AVT [5]. We demonstrate
the accuracy of image indexing and the execution time for updating incremental
vocabulary trees. Our visual search system follows [6], and we do qualitative
evaluation by image to image matching. The clustering part of AVT is replaced
by the state of the art kmeans and the proposed algorithms. We evaluate the
online clustering process of modified AVT and show the performance of image
matching for indoor and outdoor environments.

Three figures (from left to right) in Fig. 6 and Fig. 7 show the image similarity
matrix that represents the similarity scores between training and test images.
From this matrix, we can calculate the localization accuracy on each dataset,
and diagonal elements show loop detection and the right-top part indicates loop
closure. However, three similarity matrixes in each dataset have similar values
and show similar patterns. These results mean that our clustering method runs
well without losing accuracy. The last figure in Fig. 6 and Fig. 7 shows the
execution time for the clustering process. This process runs when a test image
is inserted. If a test image is an unseen one, features of the image are inserted
into the incremental vocabulary tree, and all histogram of images are updated.
When adaptation of the incremental vocabulary tree occurs, the graph of the last
figure has a value. As we can see in figure (d), the elapsed time of our method
is smaller and the number of executions is greater.

In Fig. 8, we use the precision-recall curve instead of a similarity matrix. The
tendency of both results is similar to that seen above.

Two images (from left) of each row in Fig. 9 are connected with each dataset:
images of the first row belong to the indoor dataset, the second belong to the
small outdoor dataset, and the third belong to the large outdoor dataset. Images
of the third column show total localization results. There are three circles: green,
the robot position; yellow, added image position; and red, a matched scene po-
sition. In order to prevent confusion, we should mention that the trajectories of
the real position (green line) are slightly rotated to view the results clearly and
easily.
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Fig. 6: The performance comparison on the indoor dataset. (a), (b), (c) are the
image similarity matrix of the conventional approach and the proposed algo-
rithm. (d) is the elapsed time of clustering.
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Fig. 7: The performance comparison on the small outdoor dataset. (a), (b), (c)
are the image similarity matrix of the conventional approach and the proposed
algorithm. (d) is the elapsed time of clustering.
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Fig. 8: The performance comparison on the large outdoor dataset. (a) is the
precision-recall of the loop detection. (b) is the elapsed time of clustering.
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Fig. 9: Example images and the result of the loop detection in each dataset.
Images of the first row belong to the indoor dataset, and images of the second
and third rows belong to outdoor datasets.
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5 Conclusions

In this paper, we have introduced an accelerated kmeans clustering algorithm
that uses binary random projection. The clustering problem is formulated as a
feature selection and solved by minimization of distance errors between original
data and refined data. The proposed method enables efficient clustering of high
dimensional large data. Our algorithm shows better performance on the simu-
lated datasets and real datasets than conventional approaches. We demonstrate
that our accelerated algorithm is applicable to an incremental vocabulary tree
for object recognition and image indexing.
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